
Quantitative Understanding in Biology 
Module I: Statistics 
Lecture II: Probability Density Functions 
and the Normal Distribution 

The Binomial Distribution 
Consider a series of N repeated, independent yes/no experiments (these are known as Bernoulli trials), 
each of which has a probability p of being ‘successful’. The binomial distribution gives the probability of 
observing exactly k successes. 

The dbinom function in R will compute this probability for you: dbinom(k, n, p) 

Note that the binomial distribution is a discrete distribution. That is, it only makes sense for integer 
values of k. You can’t ask: what is the probability of observing 4.3 heads in ten coin tosses. Also note 
that the binomial distribution has two parameters: n and p. 

We can plot the probabilities of observing k heads in ten flips of a fair coin: 

> x <- 0:10 
> barplot(dbinom(x,size=10,prob=0.5), names.arg = x) 
 
Note that we have chosen to represent the probability density function (PDF) with a bar plot, and not a 
line plot. This emphasizes the discrete nature of the probability density function. 

In the literature, you will often see reference to ‘successful’ and ‘unsuccessful’ Bernoulli trials. This 
implies that one outcome is worse than the other, which is not always the case. In the case of heads vs. 
tails, or blue vs. brown eyes, it is not clear which outcome is considered a ‘success’. While most would 
consider death to be the ‘unsuccessful’ outcome, in the case of, say, cancer treatment, cell death (of 
cancer cells) would be considered successful. In bottom line is to be sure you convey (or understand) 
what you mean by a successful outcome. 

We can also compute and plot cumulative probabilities. This is useful for answering questions such as: 
What is the probability of observing more than seven heads in ten tosses of a fair coin? 

The above question is answered by the evaluation… 

> 1 - pbinom(7,size=10,prob=0.5) 
[1] 0.0546875 
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To see why the above command gives the answer we are looking for, consider that 

pbinom(7,10,0.5) yields the probability of observing 0…7 heads. Subtracting that from one thus 
gives the probability of all other cases; i.e., 8…10 heads. 

A plot of the cumulative density function is generated by: 

> barplot(pbinom(x,10,0.5), names.arg = x) 

Note that, by default, the pbinom function reports the probability for k ≤ x (the first argument). When 
working with discrete density functions, be careful about off-by-one errors. You can verify your answer 
for the above problem by summing the PDF: 

> sum(dbinom(8:10,10,0.5)) 
[1] 0.0546875 
 

We can also use R to generate random values that follow a distribution: 

> rbinom(50,10,0.5) 
 [1] 4 6 5 3 4 5 5 6 5 8 4 5 6 4 4 5 4 6 5 2 6 5 6 6 6 
[26] 7 5 6 5 7 7 4 6 6 7 5 6 4 7 7 7 5 5 5 6 5 6 6 5 5 
> hist(rbinom(1000000, 10, 0.5), breaks=seq(-0.5, 10.5, by=1)) 
 

Note how the binning was specified. 

A histogram of a large quantity of random data from a distribution will look a lot like a plot of the 
density function from that distribution, except that the density function is normalized. 

The above distribution roughly resembles a normal distribution. This is not always the case for a 
binomial distribution: 

> x <- 0:10; barplot(dbinom(x, 10, 0.2), names.arg = x) 

The peak for this distribution is not surprising; there are 10 trials with each having a 20% chance of 
success, so we expect a peak at around 2. 

Consider 100 trials, with each having a probability of success of 2%. We still expect a peak at around 2. 

> x <- 0:10; barplot(dbinom(x, 100, 0.02), names.arg = x) 

Note that we choose to only plot the first eleven bars (k = 0…10). We could plot out to 100, but, in this 
case, the probably of observing more than 10 successes is quite small. In fact, we know how to compute 
this:  

> 1-pbinom(10,100,0.02) 
[1] 5.646028e-06 
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The Poisson Distribution 
Let’s plot the binomial distribution where N increases while N*p is constant. We’ll learn a little more 
about plotting in R as we go. 

Attempt #1: 

> x <- 0:10  
> par(mfrow=c(1,4)) 
> barplot(dbinom(x, 10, 0.2), names.arg = x) 
> barplot(dbinom(x, 100, 0.02), names.arg = x) 
> barplot(dbinom(x, 1000, 0.002), names.arg = x) 
> barplot(dbinom(x, 10000, 0.0002), names.arg = x) 
 
Nice! We can make a panel of plots with R; this is a useful way to compare plots. But in this case the 
axes are not uniform, and the plots should be labeled. 

Attempt #2 (the par settings are still in effect): 

> n <- 10; barplot(dbinom(x, n, 2/n), names.arg=x, ylim=c(0,0.35), main=paste("n = ", n)) 
> n <- 100; barplot(dbinom(x, n, 2/n), names.arg=x, ylim=c(0,0.35), main=paste("n = ", n)) 
> n <- 1000; barplot(dbinom(x, n, 2/n), names.arg=x, ylim=c(0,0.35), main=paste("n = ", n)) 
> n <- 10000; barplot(dbinom(x, n, 2/n), names.arg=x, ylim=c(0,0.35), main=paste("n = ", n)) 

 

Computers are good at repetitive tasks; let’s get R to do the repetitive work (again, par is in effect). 

Attempt #3 

> for (n in c(10,100,1000,10000)) { 
+    barplot(dbinom(x, n, 2/n), names.arg=x, ylim=c(0,0.35), main=paste("n = ", n)) 
+ } 

 

Finally, we reset our plotting parameter so we get single plots instead of panels. 

> par(mfrow=c(1,1)) 

We can observe that as N increases, the distribution converges. This is, in fact, the Poisson distribution. 
It has only one parameter, often denoted in the literature as λ, which is the average number of 
successes observed in a particular interval of interest.  

The Poisson distribution is very useful. It is used to model count data per unit time (or length, or area, or 
whatever). Once you have measured λ, you can use the Poisson distribution to compute the probability 
of observing a specific number of events in a given interval. You don’t ever have to know what the 
underlying probability of your event is, or how many times your event of interest did not happen. 

The Poisson distribution is sometimes referred to as the distribution of “rare events”. This is done 
because p (the probability of a single Bernoulli trial being successful) is usually very, very small. This is 
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counterbalanced by the fact that there are many, many opportunities for that event to happen, so, 
overall, the event is not that rare. 

Some examples of processes modeled by the Poisson distribution are: ticks of a radiation counter, 
mutations of a DNA sequence, lightning strikes, and neuronal spike trains. 

Example: An average of four babies are born each night on a particular maternity ward. (A) What is the 
probability that the intern on call will be able to sleep through the night? (B) What is the probability that 
the intern will be swamped (defined as more than six births to be attended to)? 

For part (A), we simply evaluate the Poisson distribution for the case where k = 0, and λ = 4: 

> dpois(0,4) 
[1] 0.01831564 
 

For part (B), we will use the cumulative distribution function: 

> 1 - ppois(6,4) 
[1] 0.1106740 
 

With a 1.8% chance of getting a good night’s sleep and an 11% chance of getting swamped, things don’t 
look too good for our intern. 

Note that, like the binomial distribution, the Poission distribution is also discrete. It does not make sense 
to ask what the probability of 3.7 births on the ward is. However, λ does not need to be an integer; it is 
fine if the average number of births on the ward is 4.1 per night (our intern’s life is just a little bit 
tougher then). 

As you have probably figured out by now, R has a set of functions for each standard probability 
distribution. Functions prefixed by ‘d’ report the probability density function; those prefixed with a ‘p’ 
report the cumulative distribution function, and those with an ‘r’ generate random samples from the 
underlying distribution: 

> rpois(50,0.25) 
 [1] 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 2 0 1 0 
[26] 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

The Geometric Distribution 
The geometric distribution models the waiting time between successes of Bernoulli trials, each with 
probability p. They tend to have long tails. 

> x <- 0:20 
> barplot(dgeom(x,0.25), names.arg=x) 
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Again, we also have a cumulative density function… 

> barplot(pgeom(x,0.25), names.arg=x) 

…and a means of generating random values from the distribution: 

> rgeom(10, 0.25) 
 [1] 6 4 8 0 1 0 2 3 1 3 
  

Note that the distribution is defined as the number of (discrete) trials between successful outcomes. 
This implies that the distribution is defined for x=0. In fact, the value of the distribution at x=0 should be 
obvious… 

In addition to the ‘d’, ‘p’, and ‘r’ functions, R has a quantile function for each distribution. We saw this in 
an earlier section for the normal distribution. 

Example: Assuming two heterozygotic parents, how many offspring would you have to breed to be 95% 
sure that at least one will express a recessive phenotype? 

The answer is (to me, at least) surprisingly high… 

> qgeom(0.95, 0.25) + 1 
[1] 11 
 

We need to add one in the computation above because waiting for zero breeding periods implies 
producing one offspring. The relatively high answer is not that unexpected when you recall that this 
distribution does have long tails. 

There is another way to reason this problem, and verify the result. We know that the probably of each 
offspring not expressing the recessive phenotype is 0.75. So, for example, the probability of not have 
any offspring that express the desired recessive phenotype if two are bred is . For three 
offspring, the result is . To solve our problem, we need to increase our exponent until 
the resulting probability is less than 1-95%=0.05. 

> x <- 0:15; cbind(x, y=0.75^x) 
       x          y 
 [1,]  0 1.00000000 
 [2,]  1 0.75000000 
 [3,]  2 0.56250000 
 [4,]  3 0.42187500 
 [5,]  4 0.31640625 
 [6,]  5 0.23730469 
 [7,]  6 0.17797852 
 [8,]  7 0.13348389 
 [9,]  8 0.10011292 
[10,]  9 0.07508469 
[11,] 10 0.05631351 
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[12,] 11 0.04223514 
[13,] 12 0.03167635 
[14,] 13 0.02375726 
[15,] 14 0.01781795 
[16,] 15 0.01336346 

The Uniform Distribution 
This is the first continuous distribution we consider in this section. It has two parameters, a minimum 
and a maximum of a range. The idea behind the uniform distribution is trivial: any value (not just 
integers) between the minimum and maximum is equally likely to be found in a sample from this 
population. 

> curve(dunif(x, 0, 10), -0.3, 10.3) 

A plot of the probability density function for the uniform distribution looks like a flat plateau. Note that 
the PDF is normalized, so that the area under the curve is unity. Note that the plot that R produces is an 
approximation; the edges of the plateau should be perfectly vertical. 

Observe that for continuous distribution we plot curves, not bars. 

Also note that the probability of observing a particular value from a continuous distribution is essentially 
zero. The chances of observing, say, exactly 5.000000000000000000000000 (with infinitely many zeros)  
from the above distribution is nil. However, you can compute the probability of observing a number 
within a range, say between 4.99 and 5.01. This is the area under the density curve between these 
limits, or, alternatively, the integral of the probably density function from the lower limit to the upper 
limit. 

The Exponential Distribution 
The exponential distribution is a continuous form of the geometric distribution. It has one parameter, 
which is the reciprocal of the expected value (i.e., the average rate of the event). This is usually written 
as 1/λ. Consider a neuron that spikes, on averages, at 10Hz. 

> par(mfrow=c(2,1)) 
> curve(dexp(x, 10), 0, 0.5) 
> curve(pexp(x, 10), 0, 0.5) 

Like its discrete counterpart, the exponential distribution is used to model waiting times. While the 
geometric distribution models time as discrete steps, or attempts of a Bernoulli trial, the exponential 
distribution models waiting times as a continuous variable. 

Note that ‘time’ in this context can be any interval between events, and is sometimes actually a length 
or other variable (for example, your event could be passing a red house along a road). You will 
occasionally see the distance between mutated nucleotides along a chromosome modeled with an 
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exponential distribution. Very strictly speaking, this should be modeled with a geometric distribution, 
since the positions are discrete. The exponential distribution is not a bad approximation for this. 

As with all of the distributions we have surveyed that are derived from Bernoulli trials, there is an 
important assumption that the trials are independent. From the description above, one might naïvely 
imagine that you could model wake/sleep intervals as an exponential distribution (we are waiting a 
continuous amount of time for an event, falling asleep, to take place). However, this is probably not a 
good model, because we tend not to fall asleep just after getting up; the events are not independent. 
(This might, however, be a good model for wake/sleep intervals for cats!) 

The Normal Distribution 
Almost everyone is familiar with the normal distribution; it is the famous bell curve. Formally, it has two 
parameters, the mean and the standard deviation. 

> curve(dnorm(x, 0, 1), -4, 4) 

One very important result, and one of the few numerical facts that should be memorized, is that 95% of 
the area under the normal probability distribution function lies within the interval  ± 1.96 SD. 

Using R, we can add lines to our plot above to demarcate this region: 

> lines(c(-1.96, -1.96), c(0, dnorm(-1.96))) 
> lines(c(+1.96, +1.96), c(0, dnorm(+1.96))) 
 
In the lines functions above, the first vector is a list of x-coordinates; the second is a list of y-coordinates. 

We can also produce plots with shaded regions: 

> x <- seq(-4, 4, 0.01) 
> y <- dnorm(x) 
> plot(x,y,type="l") 
> polygon(c(-1.96, x[x >= -1.96 & x <= 1.96], 1.96), 
+         c(0,     y[x >= -1.96 & x <= 1.96], 0), 
+         col="red") 
 
We can also recover the 95% interval using the cumulative distribution function: 

> pnorm(1.96) - pnorm(-1.96) 
[1] 0.9500042 
And, of course, we have our quantile function. You should be able to trivially predict the results of these: 

> qnorm(0.5); qnorm(0.025); qnorm(0.975) 

Statistical Tests, the Normal Distribution, and the Central Limit Theorem 
Many statistical tests are derived under the assumption that the data follow a normal distribution. 
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Most biological data does not strictly follow a normal distribution. In particular, to be strictly true, you 
must be able to admit, albeit at very low probabilities, any real value, including arbitrarily large positive 
and negative numbers. Also, any discrete distribution cannot, by definition, be normal. 

The central limit theorem, a cornerstone of statistical theory, resolves this apparent conflict. It states 
that the distribution of estimated means of a population based on repeated, finite samples, will 
approximate a normal distribution. The amazing thing about the central limit theorem is that this works 
even if the underlying distribution is not normal. In fact, even if it is pathologically not normal, the 
central limit theorem still holds. Since much statistical testing involves comparing means (we will spend 
the next two sessions doing this), we have some hope of our statistics being valid. 

Another way of thinking about the central limit theorem is that it tells us that the SEM is a valid 
indication of how well we know the true mean of the underlying population, even if the sample mean 
and SD are not a good representation of the distribution of the population. 

It also turns out that a measurement subject to noise from several random sources (of approximately 
the same magnitude) will approximate a normal distribution, even if the sources of the underlying noise 
are not normal. 

If your data are not normally distributed, you have a few choices: 

• Use statistical tests anyway; many are quite robust and work well, even for moderately non-
normal distributions of data. However, some are not, and you may want to research the 
robustness of a particular method before using it. 

• Transform your data so they are normally distributed. Lograthmic transformations are often 
helpful (especially when dealing with sizes of organisms or colonies). You may find some 
justification for doing this by considering the underlying physical process. Do be careful to take 
due account of units of measure if you do this, as it is mathematically incorrect to take a 
logarithm of a quantity that is not dimensionless. 

• Use a non-parametric test. These are usually based on rank-order of data, rather than the actual 
numerical values themselves. Non-parametric tests are usually substantially less powerful than 
their parametric counterparts. This means that you have a higher chance of your analysis being 
inconclusive, and may need to increase N in your experimental design to get good results. 

• Use tests specifically designed for a particular non-normal distribution. These can be difficult to 
find and apply correctly. We’ll see one common example in the next session, but, in general, it 
may be wise to work with a professional statistician if you need to go down this road. 

Assessing Normality 
Since most statistical tests can be applied if the data are ‘close to normal’, we need a way of assessing 
this. The waters are somewhat murky, but there are a few options: 

• You can plot histograms and density functions and visually inspect them. 
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We have seen some problems with histograms in an earlier session. The arbitrariness in the binning 
makes them more than occasionally misleading. Adding a density plot can help, but there is still another 
underlying problem: our brains are not that good at distinguishing a normal distribution (one that 
follows a Gaussian curve) from other generally bell shaped distributions. 

• You can perform formal statistical tests for normality. 

This is less useful than you would initially expect. They are often inconclusive for small N, as there is 
simply not enough information to make any kind of determination. Furthermore, for large N, the test 
usually concludes that the distribution of the data is not normal (because most biological data actually 
are not), even when it is close enough to normal for other tests to work.  

These tests can be a useful tool, however, in automated pipelines when you can’t practically inspect all 
your data and you need to find a few needles in a haystack. 

• You can evaluate normality using QQ plots. 

This is a favorite of statisticians. QQ plots (or quantile-quantile plots) transform your data in such a way 
that if your data are normally distributed, the points will fall close to a straight line. Since our visual 
system is very good at assessing linearity, with a little training, we can often perform better at 
distinguishing normal from non-normal distributions using QQ plots than with histograms or density 
functions. 

Formal Tests for Normality 
R provides two functions that can be used to test for normality. shapiro.test and ks.test 
perform the Shapiro test and the Kolmogorov-Smirnov tests, respectively. Neither one is considered to 
be that good any more, although the Kolmogorov-Smirnov test used to be common, and many people 
are familiar with it. You may want to download and install the ‘nortest’ package for some more 
modern options. 

For our purposes, QQ plots (described below) are a better means of assessing normality, but we will 
take this opportunity to have a first look at formal statistical hypothesis testing. We’ll cover the 
principles in more detail in later sessions, so just consider this a light introduction. 

Formal statistical testing begins by formulating a null hypothesis; this is often written as H0. In our case: 

H0: The data being tested come from a normally distributed population. 

Next, we compute a p-value. The p-value answers this question (and only this question): 

Assuming that the null hypothesis is true, what is the probability of seeing a distribution as far or 
further from normality as your sampled test data? 
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If the p-value is small (say < 0.05 for 95% certainty), then we reason that the null hypothesis is unlikely 
to be true. This is a qualified form of reductio ad absurdum. 

If the p-value is not low we can’t conclude anything about the null hypothesis. The test is inconclusive. 
The data could have come from a normal distribution, or the null hypothesis could have been false. We 
have no idea. In other words, these tests can only rule out normality, but can never confirm it. 

To perform the Kolmogorov-Smirnov test in R… 

> x <- rnorm(100) 
> ks.test(rnorm(100), "pnorm", mean=mean(x), sd=sd(x)) 
 
        One-sample Kolmogorov-Smirnov test 
 
data:  rnorm(100)  
D = 0.062, p-value = 0.8367 
alternative hypothesis: two-sided  
 
> x <- rexp(100) 
> ks.test(rexp(100), "pnorm", mean=mean(x), sd=sd(x)) 
 
        One-sample Kolmogorov-Smirnov test 
 
data:  rexp(100)  
D = 0.1711, p-value = 0.005741 
alternative hypothesis: two-sided 
 
For now, just look at the p-values. Note that ks.test can be used to test against other distributions. 

When we ran the KS test in these examples, it is important to understand that we are test against a 
specific distribution with a specified mean and SD. You can, for example, generate data from a normal 
distribution with a mean of 0.1, and then test is against the default, standard distribution where the 
mean is zero and the SD is unity. As we may expect, for small N it is difficult to rule out the null 
hypothesis, whereas for large N, it is possible: 

> ks.test(rnorm(20, mean=0.1), "pnorm") 
p-value = 0.384 
 
> ks.test(rnorm(100000, mean=0.1), "pnorm") 
p-value < 2.2e-16 

QQ Plots 
Consider a sample of 100 values. We begin by computing and plotting a quantile for each value in the 
distribution. 

> x <- rnorm(100) 
> p <- ((1:100) - 0.5)/100 
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> p 
  [1] 0.005 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095 0.105 0.115 
 [13] 0.125 0.135 0.145 0.155 0.165 0.175 0.185 0.195 0.205 0.215 0.225 0.235 
 [25] 0.245 0.255 0.265 0.275 0.285 0.295 0.305 0.315 0.325 0.335 0.345 0.355 
 [37] 0.365 0.375 0.385 0.395 0.405 0.415 0.425 0.435 0.445 0.455 0.465 0.475 
 [49] 0.485 0.495 0.505 0.515 0.525 0.535 0.545 0.555 0.565 0.575 0.585 0.595 
 [61] 0.605 0.615 0.625 0.635 0.645 0.655 0.665 0.675 0.685 0.695 0.705 0.715 
 [73] 0.725 0.735 0.745 0.755 0.765 0.775 0.785 0.795 0.805 0.815 0.825 0.835 
 [85] 0.845 0.855 0.865 0.875 0.885 0.895 0.905 0.915 0.925 0.935 0.945 0.955 
 [97] 0.965 0.975 0.985 0.995 
> q <- qnorm(p) 
> plot(q) 
 

This sigmoid shape is characteristic of the Gaussian distribution. Reading from the plot, this says that, if 
the data we have is indeed sampled from a normal distribution, we expect the smallest value to be 
about -2.6. We can see this numerically as well. 

> q[1] 
[1] -2.575829 
 

Similarly, the 20th value (in rank order) should be around -0.85. Etc. 

Now, if we plot the expected values against the actual values, we expect a more or less straight line. 

> plot(q, sort(x)) 

If your data are from a normal distribution, but with a different mean and/or SD, you will get a straight 
line with a different slope or intercept. If your data are not from a normal distribution, you will observe 
systematic departures from a straight line. 

Especially for non-large N, due to sampling variability, you will see some squiggle in the data, even if it is 
sampled from a normal distribution. A common technique for assessing normality is to prepare a panel 
of eight or ten QQ plots. One is plotted with your data, and the others with random samples from the 
normal distribtion of the same size as your data set. If the panel with your data stands out, you can 
conclude that it is probably not normal. 

Note that QQ plots are not limited to testing for normality. You can test against any postulated 
distribution, and can even plot two distributions against each other. 

If you are testing for normality, R has two built-in functions that streamline the process: 

> qqnorm(x); qqline(x) 
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